Impact of Ammonium on Syntrophic Organohalide-Respiring and Fermenting Microbial Communities
نویسندگان
چکیده
Syntrophic interactions between organohalide-respiring and fermentative microorganisms are critical for effective bioremediation of halogenated compounds. This work investigated the effect of ammonium concentration (up to 4 g liter(-1) NH4 (+)-N) on trichloroethene-reducing Dehalococcoides mccartyi and Geobacteraceae in microbial communities fed lactate and methanol. We found that production of ethene by D. mccartyi occurred in mineral medium containing ≤2 g liter(-1) NH4 (+)-N and in landfill leachate. For the partial reduction of trichloroethene (TCE) to cis-dichloroethene (cis-DCE) at ≥1 g liter(-1) NH4 (+)-N, organohalide-respiring dynamics shifted from D. mccartyi and Geobacteraceae to mainly D. mccartyi. An increasing concentration of ammonium was coupled to lower metabolic rates, longer lag times, and lower gene abundances for all microbial processes studied. The methanol fermentation pathway to acetate and H2 was conserved, regardless of the ammonium concentration provided. However, lactate fermentation shifted from propionic to acetogenic at concentrations of ≥2 g liter(-1) NH4 (+)-N. Our study findings strongly support a tolerance of D. mccartyi to high ammonium concentrations, highlighting the feasibility of organohalide respiration in ammonium-contaminated subsurface environments. IMPORTANCE Contamination with ammonium and chlorinated solvents has been reported in numerous subsurface environments, and these chemicals bring significant challenges for in situ bioremediation. Dehalococcoides mccartyi is able to reduce the chlorinated solvent trichloroethene to the nontoxic end product ethene. Fermentative bacteria are of central importance for organohalide respiration and bioremediation to provide D. mccartyi with H2, their electron donor, acetate, their carbon source, and other micronutrients. In this study, we found that high concentrations of ammonium negatively correlated with rates of trichloroethene reductive dehalogenation and fermentation. However, detoxification of trichloroethene to nontoxic ethene occurred even at ammonium concentrations typical of those found in animal waste (up to 2 g liter(-1) NH4 (+)-N). To date, hundreds of subsurface environments have been bioremediated through the unique metabolic capability of D. mccartyi. These findings extend our knowledge of D. mccartyi and provide insight for bioremediation of sites contaminated with chlorinated solvents and ammonium.
منابع مشابه
Ecogenomics of microbial communities in bioremediation of chlorinated contaminated sites
Organohalide compounds such as chloroethenes, chloroethanes, and polychlorinated benzenes are among the most significant pollutants in the world. These compounds are often found in contamination plumes with other pollutants such as solvents, pesticides, and petroleum derivatives. Microbial bioremediation of contaminated sites, has become commonplace whereby key processes involved in bioremediat...
متن کاملEcology and Biogeography of Bacterial Communities Associated with Chloroethene-Contaminated Aquifers
Massive usage, along with careless handling, storage, spills, and leakages made chloroethenes (CEs) one of the most abundant classes of groundwater contaminants. Anaerobic organohalide respiring bacteria (OHRB) can couple reductive dechlorination of CEs with energy conservation, a central microbial process in (enhanced) natural attenuation of CE-contaminated aquifers. Spatial variability of OHR...
متن کاملIdentification of two organohalide-respiring Dehalococcoidia associated to different dechlorination activities in PCB-impacted marine sediments
BACKGROUND Microbial reductive dechlorination of polychlorinated biphenyls (PCBs) plays a major role in detoxifying anoxic contaminated freshwater and marine sediments from PCBs. Known members of the phylum Chloroflexi are typically responsible for this activity in freshwater sediments, whereas less is known about the microorganisms responsible for this activity in marine sediments. PCB-respiri...
متن کاملOrganohalide Respiring Bacteria and Reductive Dehalogenases: Key Tools in Organohalide Bioremediation
Organohalides are recalcitrant pollutants that have been responsible for substantial contamination of soils and groundwater. Organohalide-respiring bacteria (ORB) provide a potential solution to remediate contaminated sites, through their ability to use organohalides as terminal electron acceptors to yield energy for growth (i.e., organohalide respiration). Ideally, this process results in non-...
متن کاملOverview of organohalide-respiring bacteria and a proposal for a classification system for reductive dehalogenases.
Organohalide respiration is an anaerobic bacterial respiratory process that uses halogenated hydrocarbons as terminal electron acceptors during electron transport-based energy conservation. This dechlorination process has triggered considerable interest for detoxification of anthropogenic groundwater contaminants. Organohalide-respiring bacteria have been identified from multiple bacterial phyl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 1 شماره
صفحات -
تاریخ انتشار 2016